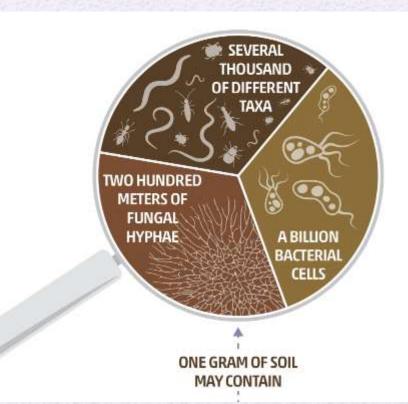
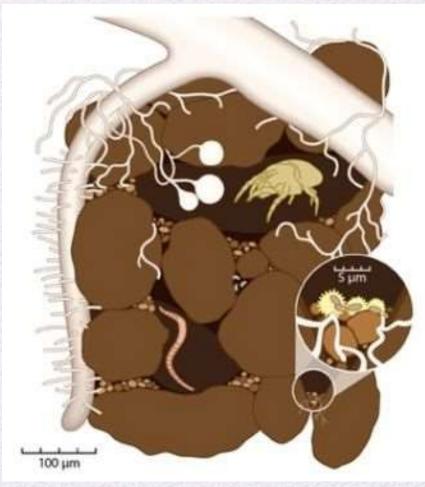


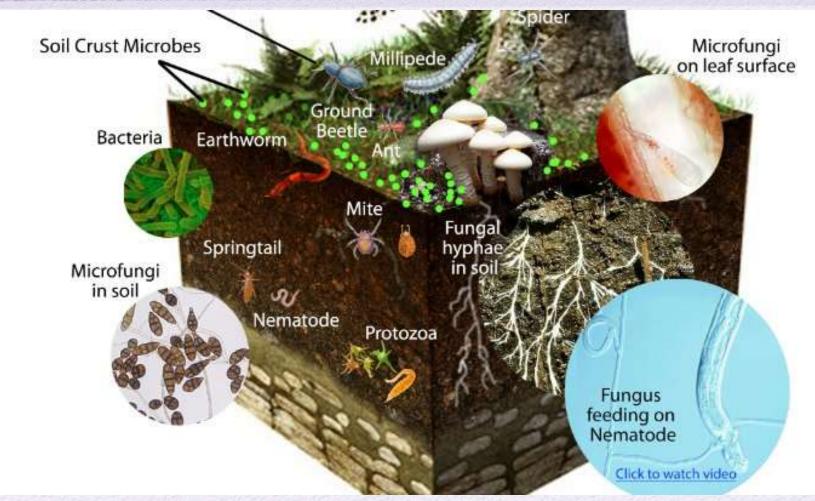
the soil microbiome

Sandra Tuszynska (PhD)

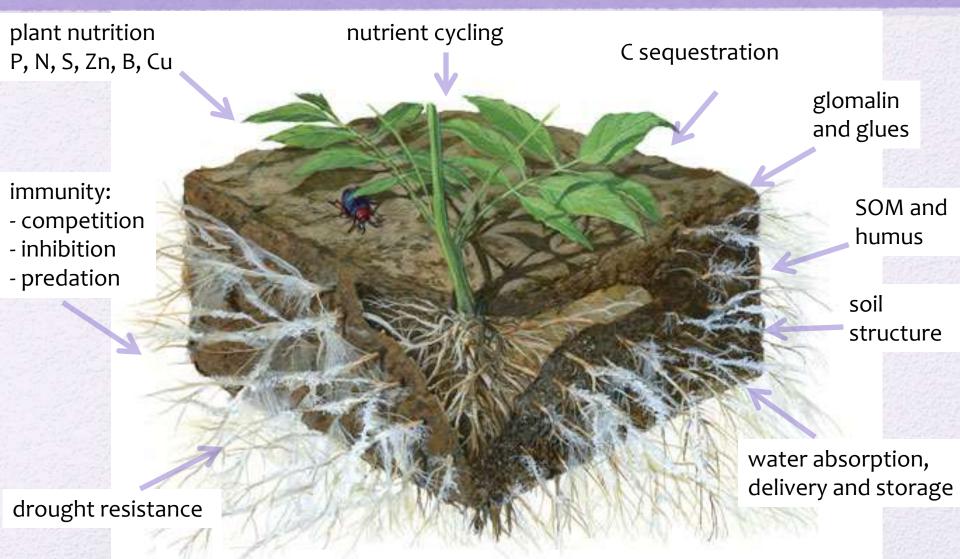


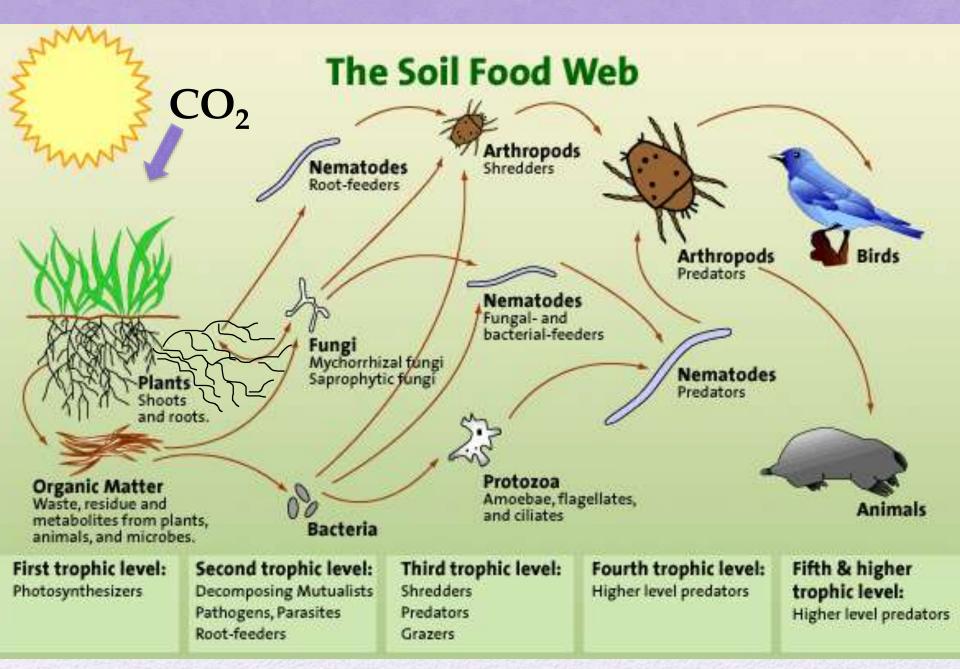

Dr. Elaine Ingham – Soil Food Web School

what is soil?


Plants + associated microbes utilising sand, silt, clay and OM, solubilising and cycling nutrients

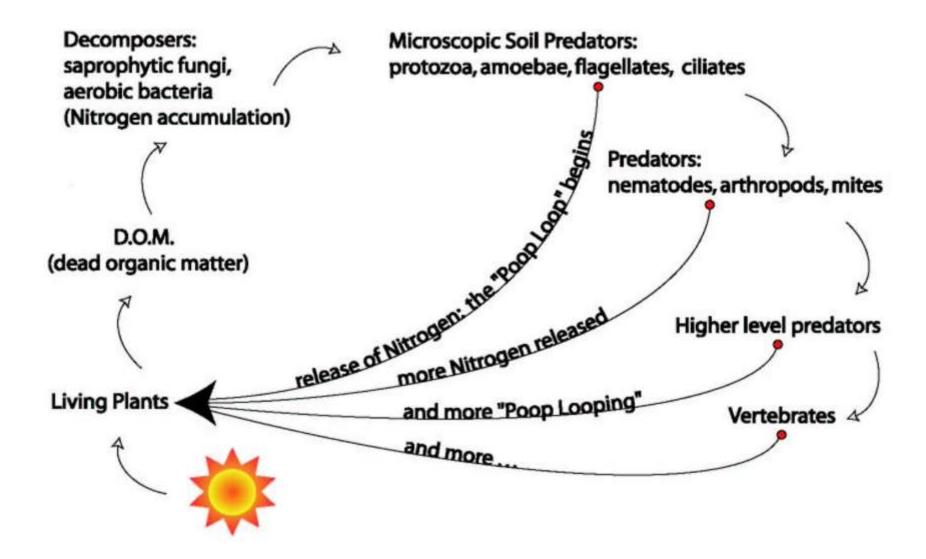
FAO, ITPS, GSBI, SCBD and EC. 2020. State of knowledge of soil biodiversity -Status, challenges and potentialities, Report 2020. Rome, FAO. https://doi.org/10.4060/cb1928en

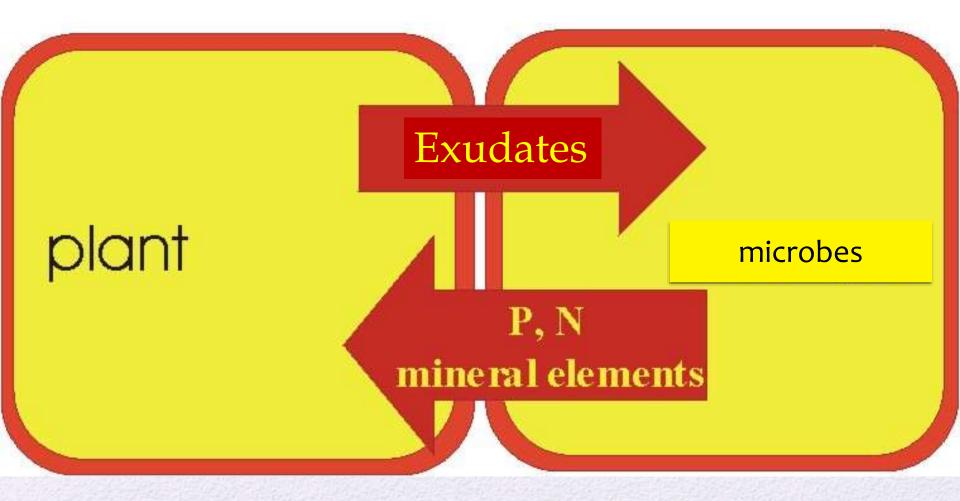

it's a living thing


don't treat it like dirt!

http://bluegrasslawn.com/everything-starts-soil/

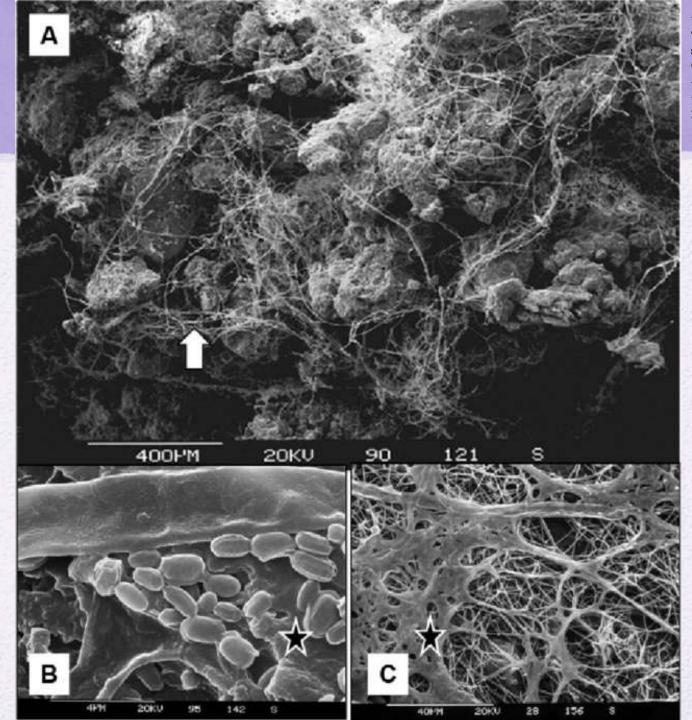
plant services


https://www.motherearthnews.com/organic-gardening/gardening-techniques/mycorrhizal-fungi-zm0z14aszkin


https://www.nuleaflawncare.com/what-is-wrong-with-chemical-fertilizers

THE POOP LOOP

Based on information from Dr. Elaine Ingham and Soil Foodweb, Inc. by Alane O'Rielly Weber, Botanical Art (c) 2004


nutrient exchange

http://www-users.york.ac.uk/~fjm3/resmyco.html

rhizosheath



Vadakattu Gupta, Margaret Roper and John Thompson (2019) Harnessing the benefits of soil biology in conservation agriculture. In (Eds J Pratley and J Kirkegaard) "Australian Agriculture in 2020: From Conservation to Automation" pp 237-253 (Agronomy Australia and Charles Sturt University: Wagga Wagga)

(A) network of fungal hyphae holding soil particles to crop residues (B) bacterial and fungal glues bind soil particles into (C) stable aggregates

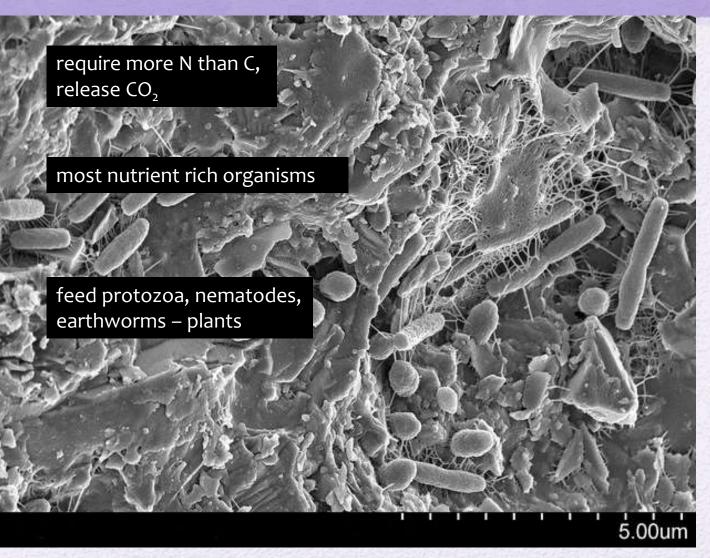
(Gupta VVSR, CSIRO)

meet the team

bacteria

extract mineral nutrients from rock

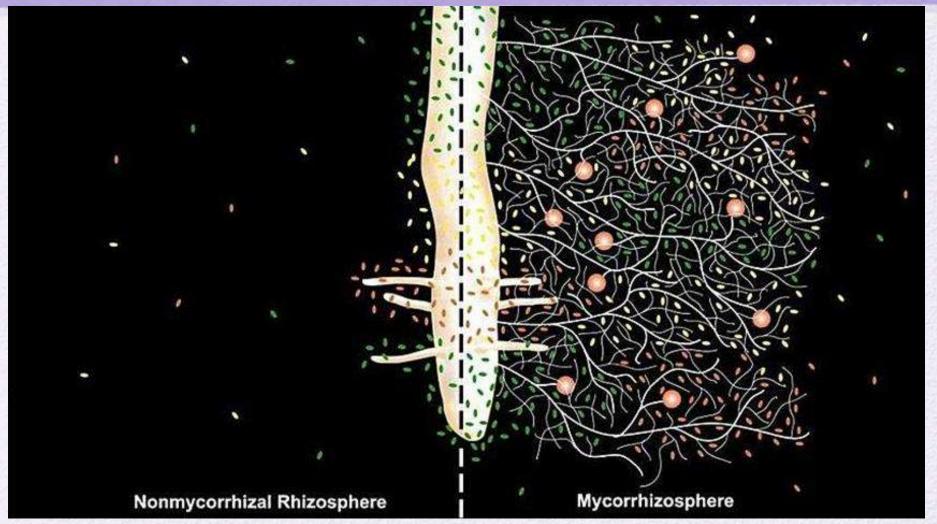
mineralize and transform organic and inorganic compounds


0

fix N_2 into NH_4^+

nitrify NH₄⁺ into NO₃⁻

Credit: Steve Gschmeissner


bacteria

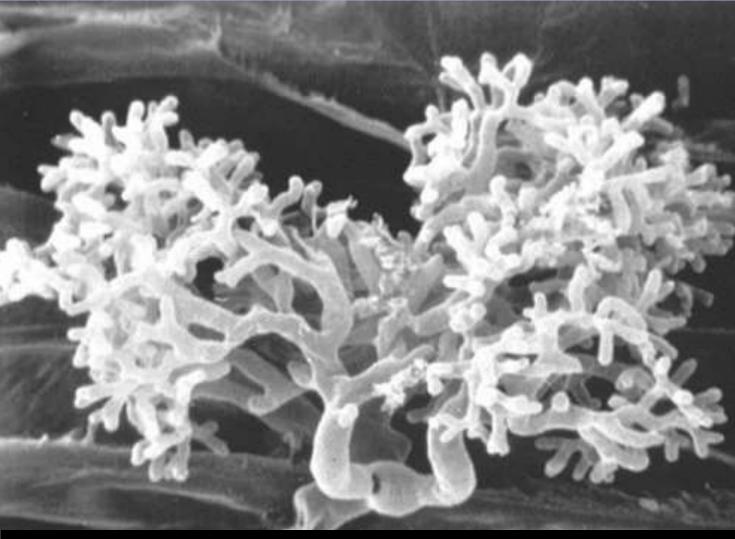
on a grain of sand form microaggregates

SEM image: Anthony D'Onofrio, William Fowle, Eric Stewart, and Kim, Northeastern University

mycorrhizal microbiome

https://fungicultura.wordpress.com/2013/01/08/decoding-the-mycorrhizal-symbiosis-why-plants-like-fungi-so-much/

arbuscular mycorrhizal fungi

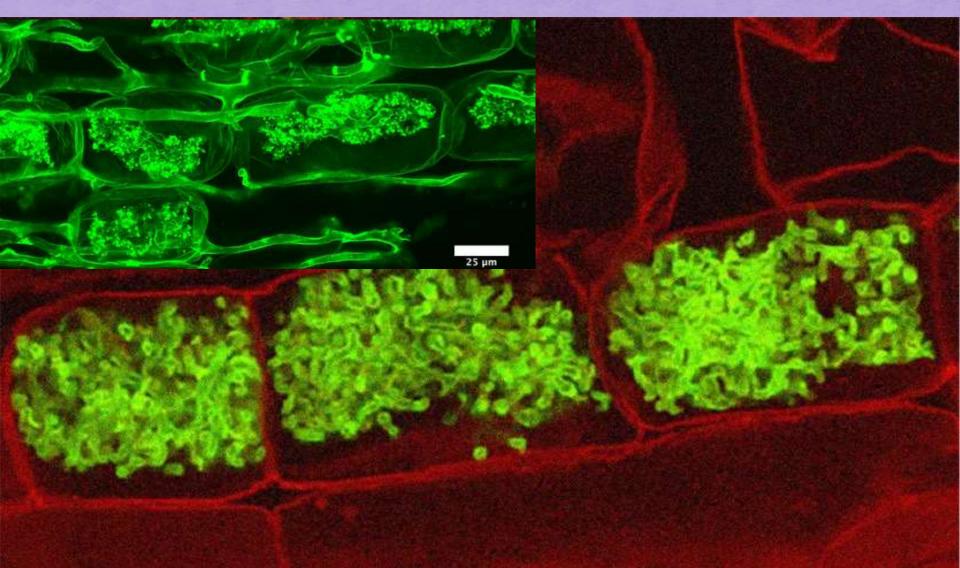

- symbiotic root extensions of ~80 - 92% of all plants (Wang & Qiu, 2006)
- 100 x more absorptive than roots
- 10-20% faster plant growth

https://www.westernsydney.edu.au/hie/topics/how_plants_benefit_from_partnerships_with_soil_fungi

Close-up of arbuscular mycorrhizal fungi connecting roots of plant hosts. Photo credit: Yoshihiro Kobae

arbuscule

in root cortex



mycelium of 4m² of perennial grassland can stretch around the equator

© Mycotown Greentech AG

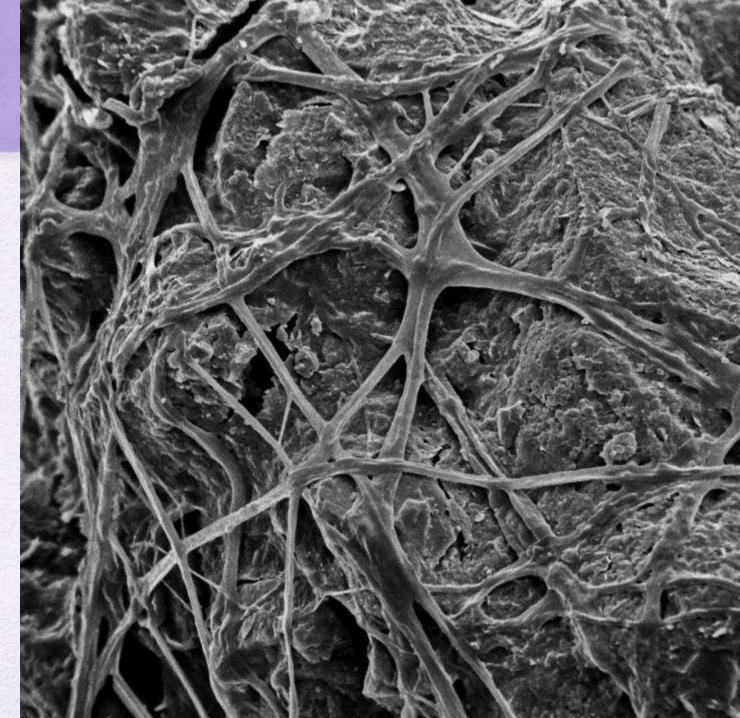
https://www.biooekonomie-bw.de/en/articles/news/mykotown-greentech-ag-uses-mycorrhiza-to-keep-plants-going/

arbuscules

Arbuscules in root cells: Maria J Harrison, BTI (https://cosmosmagazine.com/biology/symbiotic-connections-of-plants-and-fungi)

glomalin

glycoprotein containing 30– 40% C assumed to be stable and persistent


carbon in hyphae

http://www.microped.unibremen.de/SEM_index.htm

S'AL

fungi bind micro-aggregates into macro-aggregates

Image courtesy of Soil Microbial Ecology, University of Bremen. h ttp://www.microped.unibremen.de

mycorrhizal crops

http://mycorrhizae.com/info-by-industry/agriculture/agriculture-image-gallery/

difference between potatoes from untreated plants (I) and treated plants (r). Photo: Premier Tech Agriculture

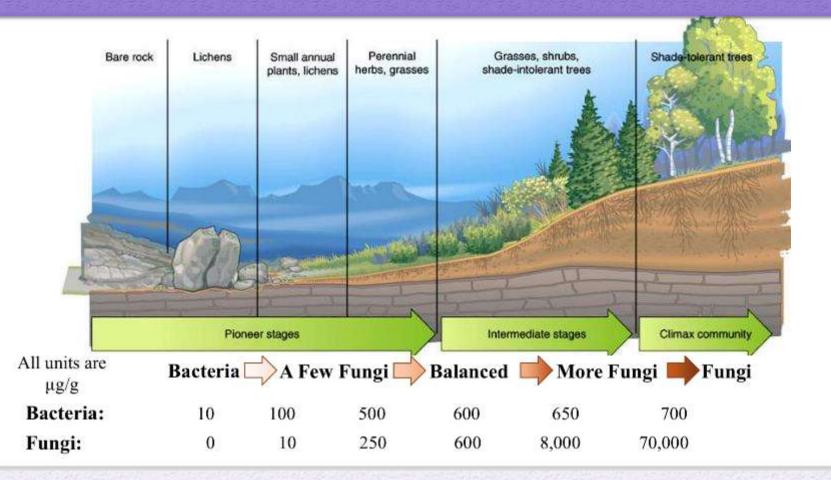
saprophytic soil fungi

coloured hyphae >3.0 μ m

decompose woody OM

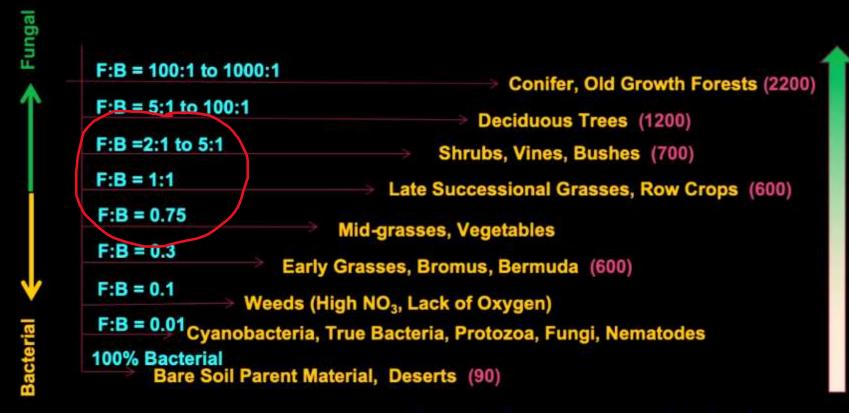
develop later in succession

bind aggregates – soil structure


feed nematodes, micro and macroarthropods, earthworms

release plant available nutrients NH₄⁺

cell walls high C fulvic and humic acids


store and sequester C

fungal:bacterial biomass determines plant succession

Soil Foodweb School LLC

Plant Succession Ladder as a Function of Fungal:Bacterial Ratio (F:B)

Elaine Ingham- www. soilfoodweb.com

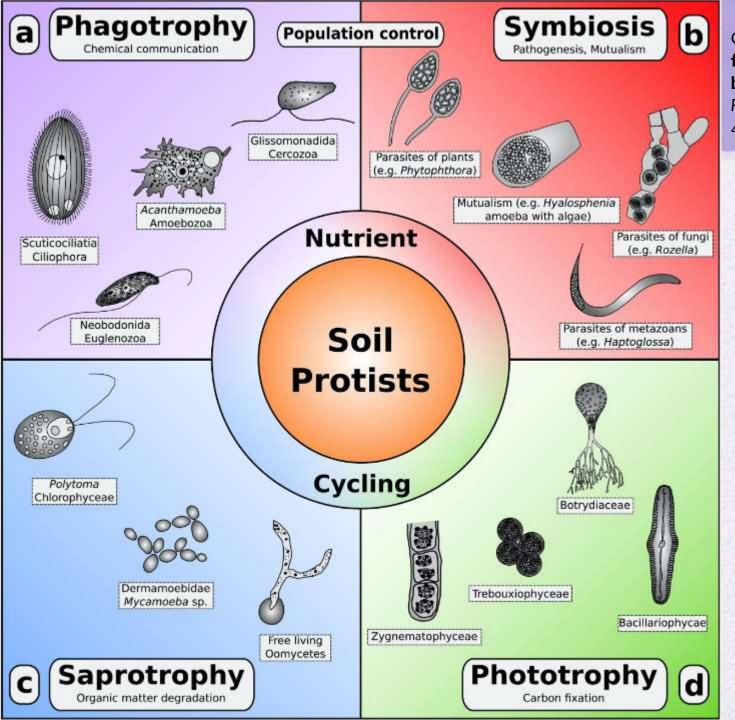
CENTER FOR REGENERATIVE AGRICULTURE AND RESILIENT
SYSTEMS

CALIFORNIA STATE UNIVERSITY

David C. Johnson PhD.

protozoa

flagellates amoebae ciliates


naked amoeba

eat bacteria, other protozoa release plant nutrients

1 protozoa consumes 10 000 bacteria/day

feed micro- and macroarthropods, worms, nematodes

Wim van Egmond http://www.microscopy-uk.org.uk/mag/indexmag.html?http://www.microscopy-uk.org.uk/mag/artsep01/amoeba.html

Geisen et al., **Soil protists: a fertile frontier in soil biology research** *FEMS Microbiology Reviews*, 42, 2018, 293–323

testate amoebae

https://bogology.org/how-we-do-it/biological-methods/testate-amoebae/

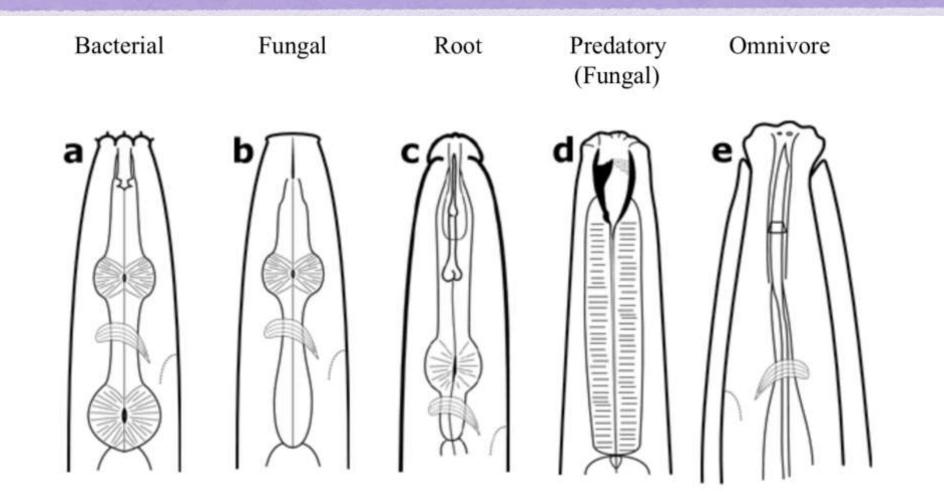
flagellates

ciliates: reduced oxygen/anaerobic

https://www.micropia.nl/en/discover/microbiology/Ciliates_en/

nematodes

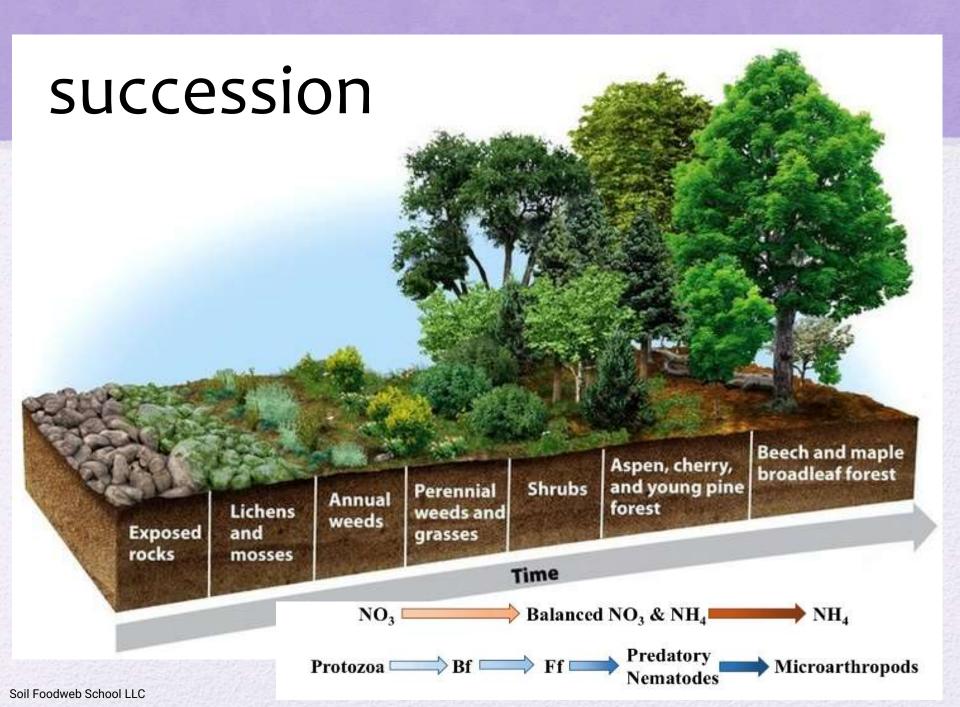
80 percent of all animals on Earth


consume bacteria, fungi, protozoa and nematodes release plant available nutrients

feed micro- and macro-arthropods, earthworms and nematode-trapping fungi

> Fungal-feeding nematodes, such as Aphelenchus sp., have a tiny spear to pierce fungal hyphae. (HM, HH, JGB)

nematode – releasing plant available nutrients


nematodes

root feeding nematode

https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/biology/?cid=nrcs142p2_053866

functional soil food web

organisms	minimal requirements/g soil
bacteria	135ug
actinobacteria	<16ug
fungi	135ug
protozoa (flagellates and amoebae) ciliates	10 000 <100
nematodes	>100

application results

Organisms	Agricultural Field	BioComplete [™] Compost (1 ton/ac)	Two weeks later
Total bacteria (µg/g dry soil)	135	900	360
# bacterial sp/g soil (DNA)	5,000	75,000	75,000
Total fungi (μg/g dry soil)	2 (i.e., dirt)	428	293
# fungal species /g soil (DNA)	500	25,000	25,000
Protozoa: F, A C	0, 0 1,450	12,000, 31,000 29	6,000, 17,000 67

Soil Food Web School ©

earthworms

consume, cultivate and disseminate microbes

soil nutrition – 7x N, 11x P

springtails

heavily tilled

compost plus plants

soil restoration

using biocomplete compost amendments

- vermicompost
- hot compost
- Johnson-Su bioreactor

natural untouched pasture

beneficial cultivation practices

perennial and multi species cover crops

rotate with mycorrhizal crops

avoid P and N fertilisers, biocides

retain stubble

apply biocomplete compost

Blanco-Canqui and Lal (2004), Lal et al., (2003)

no-till

Jacaranda Hill soil biology and multispecies cover crop trial report

Sandra Tuszynska (PhD)

BSciAg - soil biologist (microbiology, mycology, certified soil food web technician)

- Reg Pease (land manager)
- Bruce Lord and HLW
- Markus Kerkdijk

On-farm soil microbiome restoration and cover crop trial Brisbane Valley Kilcoy Landcare project Supported by Healthy Land and Water, Community NRM Activity Support Grants

> trial involved multi-species cover crops, minimum tillage cultivation and application of beneficial soil microbesl, to demonstrate improved soil health and plant nutrition benefits, to the wider community

trial aims

to improve soil

- biodiversity
- structure
- water holding capacity
- resistance to drought, pests and diseases

summary of activities and observations

- Thermal compost and worm farm cultivation of beneficial soil microbes
- Millet vs multispecies cover crop (8 species mix)
- November application of compost and castings extract to seeds and soil, post sowing (hot, dry weather, minimal irrigation)
- December and March additional extract applications to treatment crop
- Crops struggle without rain, millet monocrop poor growth, eventually strip grazed
- Multispecies cover crop takes off after March rains, especially treatment plot
- Marked difference observed in biomass and photosynthetic output of treated crop vs control
- Biological assessment did not reveal a marked soil food web organism increase, however active rhizobium nodules and root symbiotic fungi present on roots of treated crop
- Bacterial diversity increase and quorum sensing is likely to have increased and presence of bacterial predators indicates nutrient cycling

biocomplete compost preparation

cow manure

cow manure

mixerbin: cow manure, chicken manure, wood chip, silage, straw in correct proportions

loading mixerbin : to achieve desired C:N ratio

welding compost bioreactor cage

compost bioreactor on a pallet

regular temperature testing of compost to prevent overheating and anaerobic conditions

when compost reaches 75C° it must be turned

turning hot compost while monitoring moisture

chimneys added to prevent anaerobic conditions forming from bacterial overgrowth

microscopy analysis of maturing compost

compost microbiome

protozoa – testate amoeba (400x magnification) consume bacteria releasing plant available nutrients tiny bacteria (1 micron) most nutrient rich organisms on Earth

testate amoeba

compost microbiome

protozoa arcella

(400x magnification) consume bacteria releasing plant available nutrients

> protozoa cercazoa

compost microbiome

omnivorous nematode

(400x magnification) consume bacteria, protozoa and smaller nematodes, releasing plant available nutrients

nematode – releasing plant available nutrients

🔉 fungal hypha

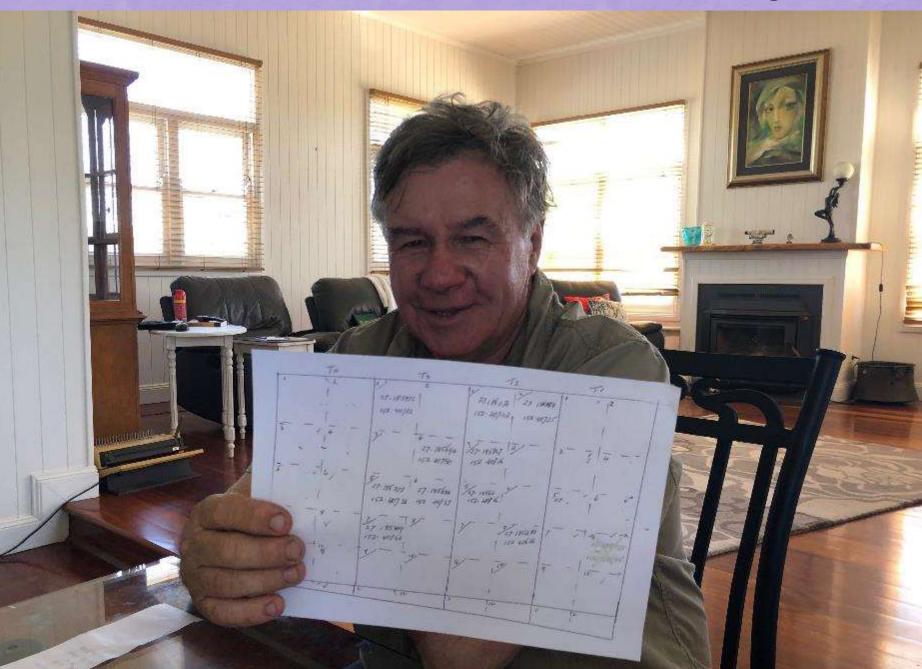
(400x magnification) sequester carbon into fulvic and humic acids (brown colour)

require organic matter to proliferate

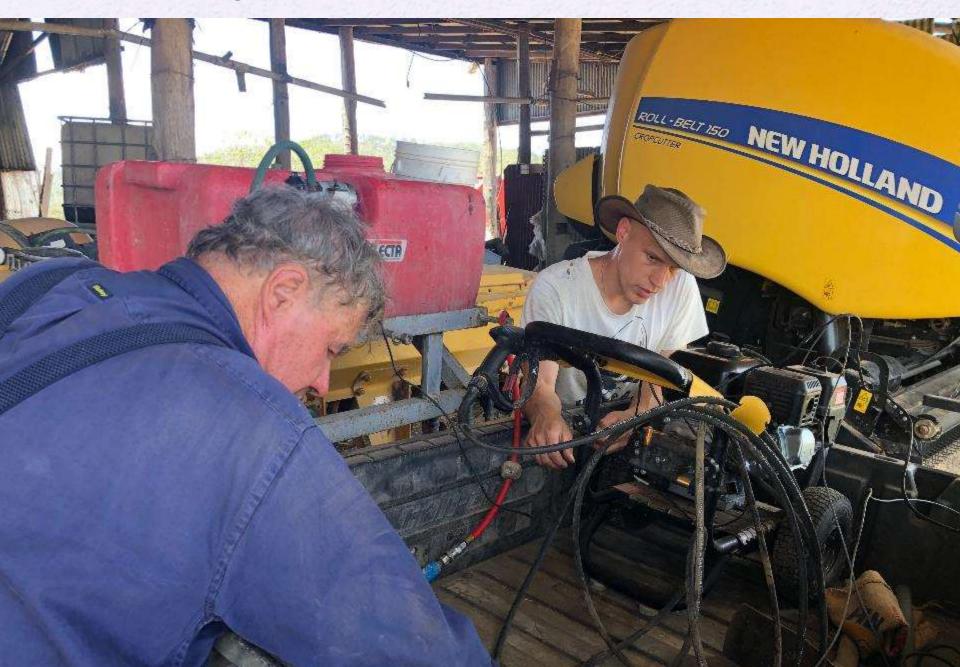
beneficial fungal hypha

increasing fungal biomass in soil provides ammonium to plants, selecting against weeds, which prefer nitrate

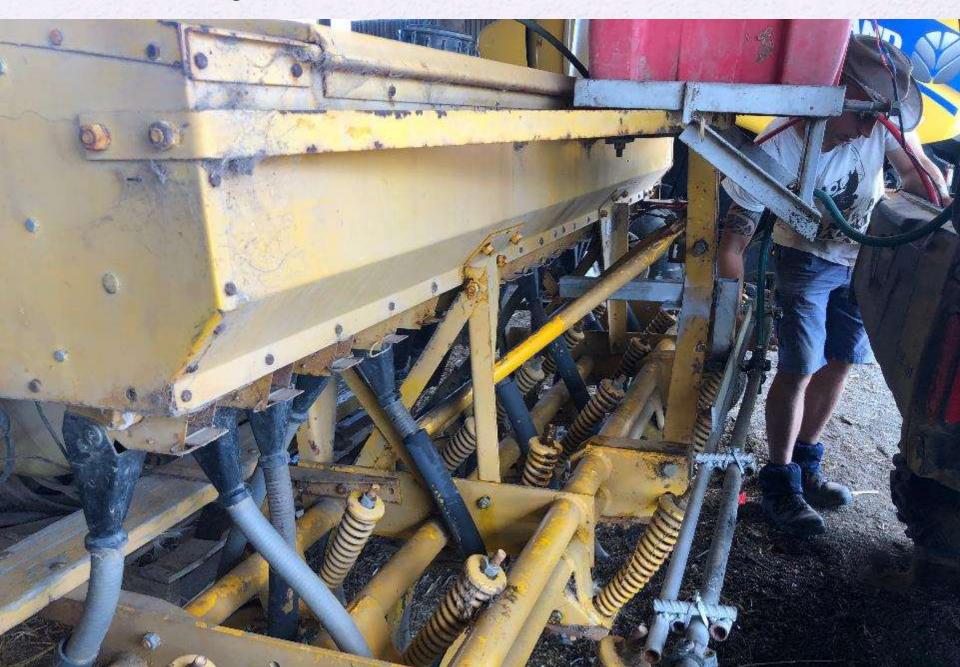
functional soil food web


organisms	minimal requirements/g soil
bacteria	135ug
actinobacteria	<16ug
fungi	135ug
protozoa (flagellates and amoebae) ciliates	10 000 <100
nematodes	>100

Our compost surpassed these minimal values


soil food web microbial analysis report of compost

Beneficial Microorganisms	Sample Results	Detrimental Microorganisms	Sample
Bacterial Biomass (µg/g)	416.884	Oomycetes Biomass (µg/g)	54.563
Bacterial Standard Deviation Biomass (µg/g)	98.912	Oomycetes Standard Deviation Biomass (µg/g)	25.787
Bacterial Standard Deviation as Percentage of Mean	23.70%	Oomycete Standard Deviation as Percentage of Mean	47.30%
Actinobacterial Biomass (µg/g)	0.707	Oomycetes Average Diameter - Weighted Mean (um)	
Actinobacterial Standard Deviation Biomass (µg/g)	0.585	Ciliates (number/g)	
Actinobacterial Standard Deviation as Percentage of Mean	82.70%	Ciliates Standard Deviation (number/g)	
Fungal Biomass (µg/g)	969.841	Ciliates Standard Deviation as Percentage of Mean	
Fungal Standard Deviation Biomass (µg/g)	437.203	Root-feeding Nematodes (number/g)	
Fungal Standard Deviation as Percentage of Mean	45.10%		
Fungal Average Diameter - Weighted Mean (um)	4.872	fungal to bacteria	I
F:B Ratio	2.322	1877 State 1877	
Total Beneficial Protozoa (number/g)	520065.0	biomass ratio of 1:	1 is
Total Beneficial Protozoa Standard Deviation (number/g)	314915.0	anough to grow	
Total Beneficial Protozoa Standard Deviation as Percentage of Mean	60.60%	enough to grow	
Flagellates (number/g)	187223.0	healthy crops	
Flagellates Standard Deviation (number/g)	174392.0		
Flagellates Standard Deviation as Percentage of Mean	93.10%		
Amoebae (number/g)	332842.0		
Amoebae Standard Deviation (number/g)	154276.0		
Amoebae Standard Deviation as Percentage of Mean	46.40%		
Bacterial-feeding Nematodes (number/g)	630.0		
Fungal-feeding Nematodes (number/g)	105.0		
Predatory Nematodes (number/g)	105.0		
Export Soil Biology	Report	Help Exit	


27th November, 2020 – trial map and planning

modifying machinery to suit compost extract application

modifying sprayer positions to deliver extract onto dropped seed

compost and worm farm castings for seed and soil inoculation

8 x seed cover crop mix

Sunflower 3% Buckwheat 8% Chicory 7% Sorghum 19% Cowpea 27% Lucerne 6% Lablab 27% Radish 3%

seed inoculant prep (molasses, water and milk mix)

seed inoculation and mixing

seed spreading

seed drying

we hand extracted microbes from the compost but compost tea brewers can be used

Soil Foodweb School LLC

lack of soil moisture and ~40C° were unfavorable for sowing

Rainfall Registration For Jacarandahill 2020

January	Febuary	March	April	May	June	July	August	September	October	November	December	Date
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
	'					'					<u> </u>	1
												2
	5											3
	11									<u> </u>		4
	20			1								5
	44						13					6
						′				′	22	7
	22											8
	12	33				/				′		9
	40	34	,		/	/		1 7		· · · · · ·	· · · · ·	10
2	· · · · · · · · · · · · · · · · · · ·	40	· · · · · ·	[]		· · · · · · · · · · · · · · · · · · ·		1		· · · · · · · · · · · · · · · · · · ·	8.5	11
	27	· · · · ·	(,		1			1 1		1	6	12
	10	· · · · ·	·,	· · · · · · · · · · · · · · · · · · ·	1			·		1	· · · · · ·	13
	· · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·					1 1			27	14
	· · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		7	8.5		1 1			7	15
23	· · · · · ·	,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1		2.5	1 1	6	1	· · · · · ·	16
	· · · · · ·	· · · · ·	· · · · · ·	9.5	1	· · · · · ·		+		1	· · · · · ·	17
18	· · · · · ·	· · · · ·	· · · · · ·		4	· · · · · ·		+		1 '	· · · · · ·	18
2	· · · · · ·	· · · · ·	· · · · · ·	/	1	· · · · · ·	 	+ + +		1 '	6	19
	· · · · · ·	· · · · ·	4	/	1			+				20
7	· · · · · · · · · · · · · · · · · · ·	· · · · · ·			7		—	+	15		· · · · · ·	21
15	·	·	· · · · · · · · · · · · · · · · · · ·			<u> </u>	—	+			· · · · · · · · · · · · · · · · · · ·	22
	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · ·	/				+			· · · · · ·	23
	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · ·	/	1			+	16	1345	· · · · · ·	24
30	· · · · · ·	· · · · ·	· · · · · ·	· · · · · ·	1	'	 	+			· · · · · · · · · · · · · · · · · · ·	25
	·'	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		1 1	13	<u> </u>	+	26		· · · · · · · · · · · · · · · · · · ·	26
1	·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		1	<u> </u>	 	+	9		· · · · · · · · · · · · · · · · · · ·	27
	!	·	,			H	 	+	20		·	28
	·	·	,			L	I	+		+	· · · · · · · · · · · · · · · · · · ·	29
1	'	·			1	<u> </u>	t	+	5	+'	· · · · · · · · · · · · · · · · · · ·	30
1	·	·	·		1	<u> </u>	l	++	2	·'	· · · · · · · · · · · · · · · · · · ·	31
		·	(,	⁷		<u>├</u> ───′	t	+		·'	· · · · · · · · · · · · · · · · · · ·	
97	191	107	4	10.5	18	21.5	15.5	0	99	1	76.5	Monthly Total
	· · · · · ·	· · · · ·	·,				<u> </u>	+			· · · · · ·	YEARLY
	· · · · · ·	· · · · ·	· · · · · ·	· · · · ·	1 7	H	<u> </u>	+		1	· · · · · · · · · · · · · · · · · · ·	
	1 '	1 /	1 1	1 /	1 /	1 '	1	1 /	1	'	1 /	1
97	288	395	399	409.5	427.5	449	464.5	464.5	563.5	564.5	641	641

From 9 am to 9 am daily

- conditions for sowing were poor
- heat and lack of moisture in the soil
- minimal irrigation was applied
- evaporation rates were high
- soil organic carbon 2.25%

November 27, 2020

sowing inoculated seed

hot (~40C°), dry summer's day

compost extract application trouble shooting

tank-pump connection failed, only parts of field received compost extract

millet (mostly weedy grass)

multispecies

millet crop (mostly other grass took over) potentially sown too deep

multispecies

multispecies

millet/grass

multispecies + biology

multispecies control

December 2020 – before rainfall

millet crop failed and was strip grazed

millet monocrop

multispecies + biology

multispecies control

a bit of rain in March got the crop growing

Rainfall Registration For Bolena 2021

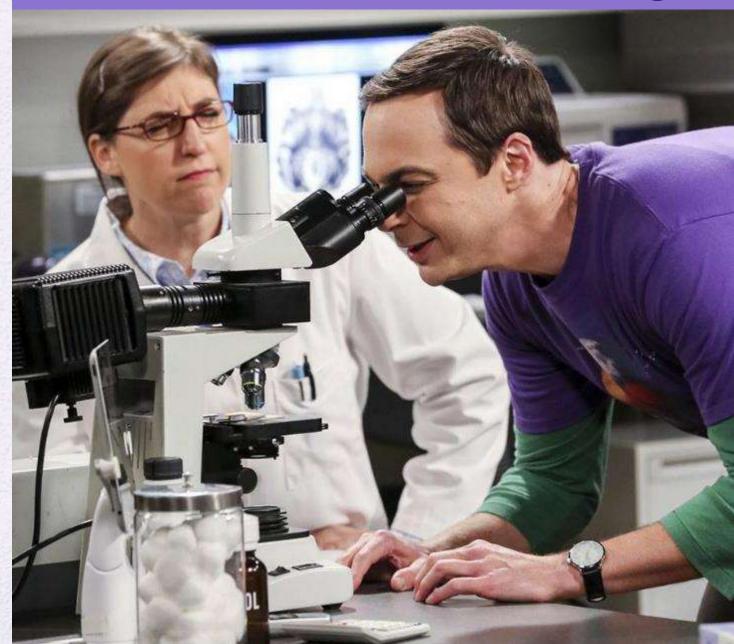
From	8	am	to	8	am	c	ail	Ιv
110111	v	am		v	am	•	a	y.

Date	lanuary	Febuary	March	April			lubr		Santamber	October	Novomber	December	Date	1
Date	January mm	mm	March mm	April mm	May mm	June mm	July mm	August mm	September mm	October mm	November mm	December mm	Date	
1	4.5			1 1000	14				1 1000		1	1	1	
2	4.0		5		14								2	1
3						10							3	
4			7.5	8		10							i i	1
5	2.5		1.5	13	32									
6	14			4	52								e e	
7	14			1									7	
9		2		'									s '	1
9	8.5	2	11.5			10							9	
10	0.0		2			10							10	
11			<u>د</u>		27								11	1
12					25								12	
13	}	4			25								13	
14		4	12		51								14	
15			12		51								15	
16		5	17										16	
17	4.5	9	22										17	
18	4.0	5	22										18	
19													19	
20	}												20	1
21			24										21	
22			21.5										22	1
23			21.0										23	
24	}		25										24	
25		3											25	
26													26	1
27			100										27	1
28	4.5												28	
29													29	1
30													30	
31													31	
													1 .	
onthly Total	34	23	159.5	26	149	20	0	0	0	0	0	0	Month	y To
Running								-	-			-	YEARLY	Ĩ
														1
411.5	34	57	216.5	242.5	391.5	411.5	411.5	411.5	411.5	411.5	411.5	411.5	411.5	1

April 2021 – multispecies cover-crop biomass measurements

treatment plot 307g wet and 106 dry weight control plot 227g wet and 88 dry weight

Normalised Difference Red Edge (NDRE) – NDRE is sensitive to chlorophyll content in leaves, variability in leaf area for pasture assessment. This is calculated using the red edge and near infrared bands, light reflectance humans cannot see


Treatment plot demonstrates higher chlorophyll content in multispectral capture data

AirBorn Insight Pty Ltd

microscopy of soil microbiology

microscopy analysis continued as crop developed and compost matured

soil biology analysis during plant growth

fungal biomass starting to develop

organic matter

beneficial fungal hypha, dark and thick

fungal hypha

beneficial fungal hyphae extract nutrients from tough plant debris, released when hyphae are consumed by nematodes and arthropods, in plant available form

fungal hypha

when beneficial fungal hyphae die, containing chitin, fulvic and humic acids which are recalcitrant humus building blocks, they build soil carbon and soil structure

roots and rhizosphere microscopy analysis sorghum root associated fungi

endophytic hypha (living within plant tissue)

fungal hypha (cell) colonizing root cells, exchanging nutrients with plant, protecting roots from infections and performing other beneficial roles

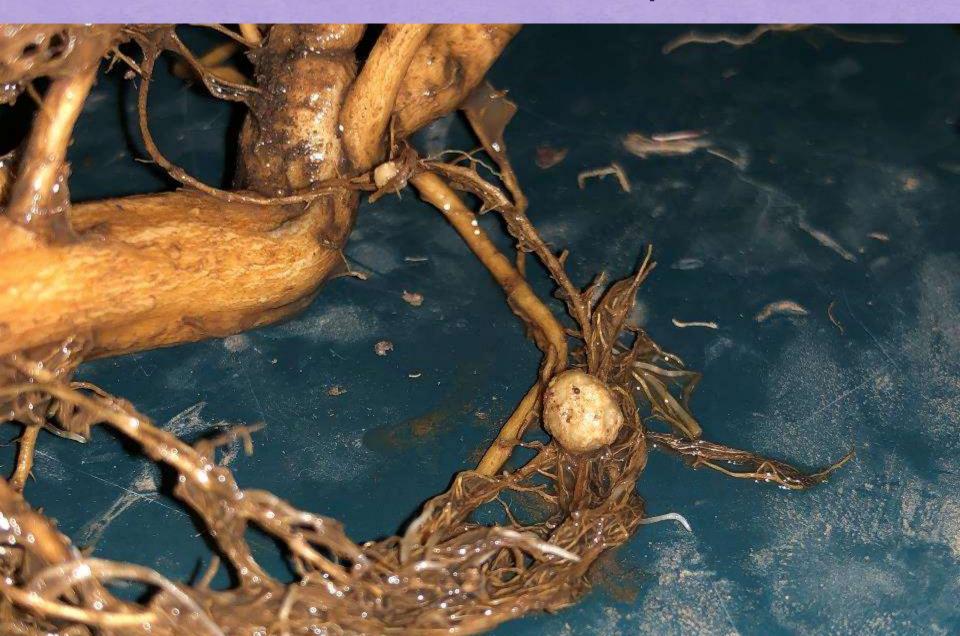
beneficial hypha infection within sorghum root

endophytic hypha (living within plant tissue) endophytic hypha (living within plant tissue)

endophytic hypha branching (living within plant tissue)

beneficial hyphae sorghum root

beneficial hypha sorghum root


76

6.5

fungal feeding nematode, releases plant available nutrients like ammonium, selecting against weed proliferation, as weeds prefer nitrate

arcella, protozoan: consume bacteria in large amounts, releasing plant available nutrients

Rhizobium nodule on cowpea roots

Rhizobium nodules fix nitrogen in legumes

Rhizobium bacteria (rods) from squashed nodule

fix nitrogen for the plant

fungal hypha in cowpea root

branching fungal hyphae within cowpea root

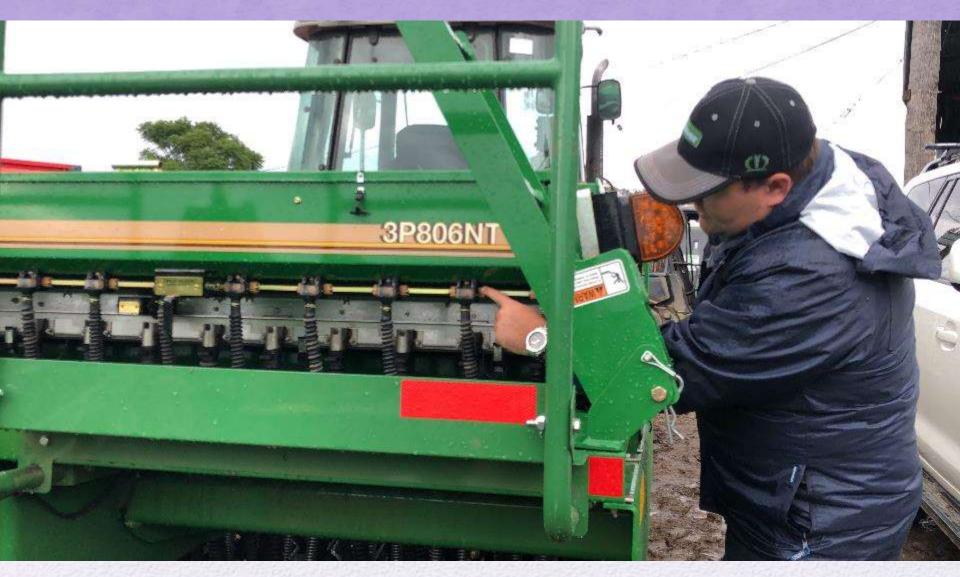
fungal hypha from cowpea rhizosphere

fungal hypha, thick and dark is what we want

May 2021 – crimper-roller trial

5th of May open field day

~40 members of the community attended an open field day to learn about the trial


presentation on the trial and the role of beneficial soil microbe cultivation for improved plant nutrition, immunity and soil health

1

AirBorn presented on the use of multispectral capture in plant health assessment

15 194

direct drill demo

cowpea and sorghum thriving

diversity of plant families : diverse exudates improve nutrient cycling and plant immunity

minimise/avoid soil disturbance: direct drill to ensure survival of microbes

provide perennial ground cover to feed beneficial microbes

goals

increase: soil moisture, structure drought resistance, carbon sequestration, nutrient availability/cycling, plant immunity/vigour, animal/human nutrition

eliminate weeds, fertilizer and pesticide costs, reduce work-load

ensure soil moisture

create compost

check for microbial diversity and apply extract/tea to soil/plants

retain crop residue and mulch to increase soil organic matter and fungal biomass

Giving Soil

https://www.patreon.com/givingsoil

- Community cultivated soil microbiome
- Given to producers
- Applied to land dedicated to biological restoration
- Food tested for nutritional value and sold at a premium
- Chemical free
- Restorative and regenerative
- No till
- Perennial cover cropping

flow through worm farm

Johnson-Su Bioreactor

Dr. David C. Johnson, molecular biologist and research scientist at the University of New Mexico, has developed a system that brings lifeless soils back to life by reintroducing beneficial microorganisms to the soil with biologically enhanced compost.

For more info contact: Sandra Tuszynska loveoursoils@gmail.com 0459 228 575

services:

- soil microscopy
- consultancy
- worm farm and compost set up and analyses
- community education
- https://www.patreon.com/givingsoil

